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Abstract—Scenario based testing is a promising approach to
evaluate autonomous vehicles for safety due to its ability to
evaluate several components at once. Automated generation of
these scenarios in simulation is needed to address the scale
and diversity requirements in scenarios. Large Language Models
(LLMs) can address this need due to their ability for world
modeling. However, these models are ineffective in their rea-
soning thereby limiting their abilities in generating complex,
dynamic vehicle interaction scenarios. In this paper, we present
Cruzway Scenario Reasoner, an LLM based system that enhances
reasoning capabilities of language models for complex vehicle
interaction questions from the Waymo Open Motion Dataset -
Reasoning dataset. This system consists of a suite of prompting
approaches which include both Chain-of-thought prompting as
well as prompting based on model based task planning in the
Planning Domain Defintion Language (PDDL). In addition, this
system also contains LLM as a judge modules for the effective
evaluation of generated responses and PDDL models. With this
system, we are able to elevate the reasoning capabilities of the
OpenAI GPT 4o-mini model. In addition, we also provide an
in-depth qualitative analysis of language model responses to 15
scenarios categorized by complexity in the information provided.

Index Terms—autonomous vehicles, large language models.

I. INTRODUCTION

Autonomous vehicles (AVs) need to be rigorously tested
before being deployed on public roads. Simulation testing
has emerged as a cost effective approach to evaluate an AV
within which scenario based testing is a promising approach
[1]. However, the scale of potential test scenarios is large
and approaches that can automatically generate these scenar-
ios are needed. Scenario generation approaches fulfill this
need. In [2], four challenges with current scenario generation
approaches are highlighted; scenario fidelity, diversity and
controllability along with algorithm efficiency. LLM based
scenario generation can address these challenges. They are
particularly well-suited to address these issues because LLMs
have a world model [3], an open natural language vocabulary
and have proven to be quite versatile [4]. It has an adequate
familiarity with autonomous vehicle scenarios and PDDL file
generation [5]. However, the introduction of LLMs also intro-
duces new challenges the lack of an ability to reason and plan
effectively [6] i.e. System 2 reasoning [7]. Several approaches
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have been proposed to address this such as LLM Modulo
frameworks, where LLMs are integrated with symbolic solvers
[8] [9] [10] and post training of LLMs where LLMs are trained
further using reinforcement learning or supervised finetuning
[11] [12]. In AV research, LLMs have been used utilized either
for driving the vehicle itself or for test scenario generation and
evaluations [13]. LLMs have been integrated with planners to
reason and navigate certain scenarios [14]. However, unlike
the contributions in this paper, it is important to note that
planners here are utilized for determining low level controls
of the vehicle and not to reason about the vehicle behaviors
and intentions.

Specifically in the scenario generation literature, current
LLM based generation approaches such as ScenicNL lack the
capability to generate complex dynamic vehicle interaction
scenarios [15]. Knowledge about the reasoning capability of
language models for such scenarios would precede approaches
to generate the same. In scenario based testing literature,
several representations have been presented. In this model, the
first three layers describe the static scenarios where elements
do not change with time and two layers describe dynamic
scenarios where elements do change with time. Dynamic
scenarios cover vehicle and pedestrian behaviors. In simulators
such as CARLA, these scenarios are in the form of a library
of behavior trees which are composed out of atomic behaviors
and atomic conditions for these behaviors [16]. Another way
to express scenarios in this simulator is by using Scenic. Here
too, diverse dynamic scenarios are severely limited. Dynamic
scenarios can be represented in a similar manner as model
based task planning problems i.e. as a sequence of conditional
actions such as the ones defined in a PDDL domain [17].
Therefore to design an effective dynamic scenario generator,
we need to consider designing an effective planning problem
generator. Since each planning problem has a corresponding
domain model which contains possible states and actions, we
need to automate the domain modeling process to happen
alongside the planning problem generation. This would ensure
context sensitivity of the domain.

In this paper, we present Cruzway Scenario Reasoner, an
LLM based system that constitutes a suite of prompting
approaches that enhance the reasoning capabilities of language
models specifically for complex dynamic vehicle interaction
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scenarios. The prompting approaches can be categorized in
the following manner: (1) Chain-of-thought (CoT) prompting
and (2) Model based task planning based prompting. In the
former, we prepare prompts with examples to facilitate in-
context learning, an effective approach to improve language
model reasoning. Inspired by prompting approaches to image
generators, we also enhance these CoT prompts with negative
prompts to communicate what not to generate to the language
models. These negative prompts are prepared after an in-depth
analysis of language model responses to 15 scenarios. In the
latter prompting approach, we use language models to generate
a Planning Domain Definition Language (PDDL) based do-
main model and problem that corresponds with the context and
question information respectively for each complex dynamic
vehicle interaction scenario. This domain model and problem
is fed into a symbolic planner which generates a solution
for the PDDL problem. The PDDL generation follows the
approach of an LLM modulo system where syntactic verifiers
are integrated with LLM based generation approaches. Here,
we use VAL as our syntax verifier. For semantic verification,
we make use of an LLM-as-a-judge [18] [19] [20]. The domain
model, problem and plan are given as a prompt to a language
model to answer a question. To evaluate answer correctness,
we make use of LLM as a judge approaches which provide us
quantitative as well as qualitative responses. The latter facili-
tates in-depth analysis as mentioned above. Through both of
these approaches we enhance reasoning capabilities and gain
insights towards LLM based dynamic scenario generation.

The rest of this paper is divided into sections as follows:
Section 2 reviews research in the domains of scenario based
testing of AVs, use of LLMs for test scenario generation, and
LLMs used for planning. Section 3 presents our approach.
Section 4 details the experimental setup and the research
questions that the experiments aim to answer. Section 5
presents the results of these experiment along with a qualita-
tive and quantitative analysis. Section 6 presents conclusions
and future directions.The code for this paper is available at
the following URL: https://github.com/AugmentedDesignLab/
CarPlanningProblemGen

II. RELATED WORKS

Several representations of scenarios have been suggested in
the literature such as the six layer model where the scenario
can be broadly divided into static layers such as roads and
dynamic layers such as vehicles and pedestrians [21]. Here,
the objects in layer 4 are dynamic objects where the state of
the object changes with time. Several works have generated
these dynamic behaviors, either as a data driven approach
[22] [23] or through manual design (cite scenario runner
BTs, OpenSCENARIO and Scenic). Here, the former has
the advantage of scale but the disadvantage of a lack of
interpretability and controllability in generation. The latter has
the benefit of better interpretability but cannot be scaled easily
and is also not as realistic. Scenarios in natural language are
interpretable and general purpose natural language generators
such as LLMs give us the ability to scale the same. In our

Fig. 1. Cruzway Scenario Reasoner Architecture

work, we address the shortcoming of LLMs low reasoning
ability about these scenarios.

LLMs have been used in the domain of autonomous vehicles
for driving functions [13]. LLMs have also been used for
test scenario generation. In several works such as [24] and
[15] LLMs have been utilized for generating domain specific
languages such as Scenic [25] to generate test scenarios for
autonomous vehicle simulators such as the CARLA simulator.
A significant drawback of these methods is the absence of
complex dynamic vehicle interaction scenarios. Addressing
reasoning capabilities of LLMs would precede the ability to
correctly generate these scenarios. This paper addresses the
need to enhance reasoning capability for these scenarios.

There have been works that have used symbolic solvers
to improve reasoning capabilities of LLMs [9] [10]. We
explore the approach in [9] where we provide symbolic solver
problems and solutions corresponding to the given question in
the prompt of a language model while asking it to generate a
response.

III. METHOD

The system architecture is presented in Figure 1. This
architecture contains two types of prompting approaches: (1)
hain-of-thought (CoT) prompting and (2) Model based task
planning (MBTP) prompting. The CoT prompting block con-
tains several prompts based on the Chain-of-thought prompting
method. The MBTP block contains a subsystem for an LLM
based MBTP system which generates a PDDL model and
corresponding problems and a solved plan generated by an
external tool. The design details of each component in this
architecture is presented in the rest of this section.

A. Dataset and Preprocessing

The natural language based question and answer (QA) data
we use is from the Waymo Open Motion Dataset - Reasoning
(Waymo-Reasoning dataset) [26]. This dataset is based on
the Waymo Open Motion dataset [27]. It contains real-world
vehicle, pedestrian and cyclist trajectory data collected for the
purpose of creating motion forecasting models. The Waymo-
Reasoning dataset contains QA data pertaining to diverse
interaction types such as ones based on traffic rules or human



intentions. We preprocess this dataset using LLMs to organize
the subgroups environment QA and surrounding agent QA as
a scenario context and the remaining subgroup interaction
QA as the interaction QA. The evaluation task given to the
language models is to answer the interaction questions given
the scenario context. We considered having an LLM rewrite
the context QA subgroup as a paragraph of text but since it
contained inconsistencies with respect to the original data, we
add the QA data as is into the context attribute. An exemplar
parsed scenario is shown in Listing 1. Here, the file size is used
as a proxy measure of scenario complexity since each scenario
is contained in its own file. These file sizes are categorized as
A, B and C representing small, medium and large file sizes
respectively.
"Context": "Can you describe the layout of the lanes where

the ego agent is currently located? The ego agent is on
the 1 lane from the left, out of 3 lanes. What is the

current velocity of the ego agent? The ego agent’s
current speed is 12 m/s. What is the ego agent’s
current action in terms of speed adjustment? The ego
agent is decelerating. Could you specify the ego agent’
s current lane position? The ego agent is on the 1 lane
from the left. What type of agent is surrounding agent
#0? Surrounding agent #0 is a vehicle. How fast is

surrounding agent #0 currently moving? Its current
speed is 16 m/s. What is the motion status of
surrounding agent #0? It is moving at a constant speed.
Where is surrounding agent #0 in relation to the ego

agent? It is 7 meters in front of the ego agent and 3
meters on the right. What is the type of surrounding
agent #2? Surrounding agent #2 is a vehicle. What is
the current speed of surrounding agent #2? Its current
speed is 17 m/s. Can you describe the motion status of
surrounding agent #2? It is moving at a constant speed.
Where is surrounding agent #2 positioned relative to

the ego agent? It is 19 meters in front of the ego
agent and 3 meters on the right.",

...
"Interactions_1": { "reference_question": "How will the ego

agent and surrounding agent #2 interact on the road?",
"reference_answer": "Surrounding agent #2 will maintain

its position ahead of the ego agent as both are
moving in the same direction with surrounding agent
#2 at a constant speed and the ego agent
decelerating." ...

Listing 1. Example parsed scenario after preprocessing. Few details have
been omitted for conciseness.

B. Prompting Using Model based Task Planning

We prompt an LLM to generate PDDL domain files for
the given contextual information and a problem file for each
scenario interaction in the parsed scenario data mentioned
previously. We then perform a syntax verification of the LLM
generated outputs using VAL [28]. In addition, we also carry
out semantic verification of the generated PDDL files for
coverage with respect to the facts in the given context. Once
the generated PDDL file is syntax error free, we make use a
the breadth first search based planner in the [29] library to
create a plan that would solve the generated problem. The
final prompt to the language model contains the scenario
context, the interaction question, the PDDL domain model
that corresponds with the context, the PDDL problem that
corresponds with the interaction question, and a plan generated
by a symbolic solver that solves the aforementioned PDDL
problem. This process is presented in Figure 2. An example
of PDDL problem generation for the parsed scenario presented

Fig. 2. Model based Task Planning (MBTP) based Prompting. The blue boxes
make use of LLMs for generation.

(define (problem ego-vehicle-scenario-v2)
...
(:objects
ego - agent
lane1 lane2 lane3 - lane
vehicle0 vehicle2 - vehicle

)
(:init
...
; Vehicle0: 7m ahead, 3m right (front-right), in lane2
(vehicle-at-fast-speed vehicle0)
(vehicle-at-constant-speed vehicle0)
(vehicle-is-in-lane vehicle0 lane2)
(vehicle-is-in-front-right-of-ego vehicle0)
(ego-near-vehicle-front-right vehicle0)
(vehicle-in-front-right vehicle0)

; Vehicle2: 19m ahead, 3m right (far front-right), in
lane2

(vehicle-at-fast-speed vehicle2)
(vehicle-at-constant-speed vehicle2)
(vehicle-is-in-lane vehicle2 lane2)
(vehicle-is-far-ahead-right-of-ego vehicle2)
(vehicle-far-in-front-right vehicle2)

)
(:goal
(ego-is-decelerating)

)
)

Listing 2. PDDL problem generated by the LLM GPT 4.1 for the interaction
question within the scenario parsed in Listing 1 and after the PDDL domain
is generated. We can observe the states in this file correspond to the
parsed interaction question and answer. Few details have been omitted for
conciseness.

in Listing 1 is presented in 2. The semantic verification for
this PDDL problem using LLM-as-a-Judge based evaluation
is presented in Listing 3.

C. Chain of Thought Prompting

The Chain of Thought (CoT) module contains a suite
of n-shot prompts based on the Chain-of-thought prompting
approach [30]. Here n represents the number of examples
contained in these prompts. These examples are based on the
interaction QA data of one scenario (identified as index 78)
from the dataset after preprocessing shown above. Each of the
prompts are also appended with two types of negative prompt
(inspired by [31]) which is prepared based on a detailed
analysis of GPT 4o-mini responses for 15 scenarios across the
small, medium and large scenarios. The details of this in-depth
analysis are presented in Section V. The two types of negative
prompt involve long and short-form, which are differentiated



"Problem data provided": "How will the ego agent and
surrounding agent #2 interact on the road?",

"Score explanation": "The problem file directly models the
interaction context: it places the ego in the leftmost
lane, next to the two relevant vehicles, with all
spatial and speed predicates correctly instantiated for
vehicle0 (close, front-right) and vehicle2 (farther

front-right). The goal is set for the ego to be
decelerating, reflecting a cautious or responsive
behavior to the nearby (closer) vehicle in the adjacent
lane. While the explicit interaction with agent #2 (

vehicle2) is less emphasized in the goal than with
vehicle0, the presence and predicates for vehicle2 show
that its position is accounted for in the conditions

surrounding the ego’s behavior. A minor shortcoming may
be the lack of an explicit future state following the

interaction (such as passing or merging), but for the
deceleration-focused goal and the state of the road
given, the coverage is very strong.",

"Grade": "9", ...

Listing 3. PDDL Problem Coverage Evaluation using GPT4.1 LLM as a
judge for the problem presented in Listing 2

by the following word count per n-shot prompt: long-form
contains 1561, 2067, and 1036 words, and short-form contains
359, 297, and 385 words, with each category listed with re-
spect to two, four, and six-shot prompting. We also considered
refined prompting where the examples are given to a language
model for rewriting. This refined prompt is of two types -
basic and lecturing. Basic utilizes GPT4.1 refine prompting
combined with short-form negative prompting. We used short
form because of the near-identical impact it shared with long-
form negative prompting (reference Table III), despite being
drastically shorter in word count. Lecturing is inspired by
the prompt formatting in [32] where concepts are explained
in the form of a lecture transcript generated by the LLM.
An overview of all prompting approaches used is found in
Figure 3.

Fig. 3. All prompting types experimented with and their connections to one
another.

D. Response Evaluations using LLM-as-a-Judge Approach

We consider GPT 4o-mini as a representative language
model for reasoning enhancement in this paper. Small LMs
are typically less capable in reasoning (and thereby more error
prone) than LLMs. Hence, the effectiveness of our prompting
approaches presented in this section will be more apparent
in Small LMs. We evaluate the reasoning capability of our

"Correctness score": "10",
"Correctness explanation": "The AI’s answer is correct.

Surrounding agent #3 is stationary and positioned to
the left and slightly behind the ego agent. Since the
ego agent is accelerating and moving forward, it will
pass by surrounding agent #3 without any interaction.
The ground truth answer incorrectly states that
surrounding agent #3 will follow the ego agent, which
is not possible as it is not moving and is not on the
same lane."

Listing 4. Scenario 52 evaluated solely on two-shot prompting, demonstrating
ground truth invalidity.

"Given Question": "How will the ego agent and surrounding
agent #2 interact on the road?",

"Ground Truth Answer": "Surrounding agent #2 will maintain
its position ahead of the ego agent as both are moving
in the same direction with surrounding agent #2 at a
constant speed and the ego agent decelerating.",

"Ground Truth Grades": {"Correctness score": "8",
"Correctness explanation": "The answer is mostly correct

but lacks precision. Surrounding agent #2 is indeed
maintaining its position ahead of the ego agent, as it
is moving at a constant speed of 17 m/s, which is
faster than the ego agent’s speed of 12 m/s (while
decelerating). However, the answer could be improved by
explicitly mentioning the speed difference and the
fact that the distance between them will increase over
time due to this speed difference.",

"Updated Answer": "Surrounding agent #2 will maintain its
position ahead of the ego agent and increase the
distance over time, as it is moving at a constant speed
of 17 m/s, which is faster than the ego agent’s speed
of 12 m/s while decelerating.", ...

Listing 5. Ground truth evaluation using LLM as a judge for the scenario
parsed in Listing 1. Few details have been omitted for conciseness.

prompting approaches using an LLM as a judge approach
with the LLM Deepseek V3 as the judge LLM. Here the
LLM makes a comparison between the small LM response
and the corresponding ground truth answer in the parsed data
and generates a correctness score out of 10.

In addition to evaluating reasoning capability of GPT 4o-
mini, we also evaluate the ground truth in the dataset itself
using the judge LLM mentioned above. This validates the
comparative LLM-as-a-judge evaluation above. In Listing 5,
we can observe an LLM-as-a-judge evaluation where the
ground truth is incorrect. In response to this, we carry out
LLM-as-a-judge based evaluation of the ground truth itself
using Deepseek V3. An exemplar ground truth evaluation of
the scenario parsed in Listing 1 is presented in Listing 5. The
evaluation is presented in Section V.

IV. EXPERIMENTAL SETUP

In this section, we explore how GPT4o-mini rationalizes
with close-proximity autonomous driving interactions with-
out the corresponding PDDLs for small, medium, and large
Waymo -Reasoning files, and procedures taken to optimize
this rationalization to that of an LLM’s performance. Our
exploration built upon our research questions outlined in
subsection A. To address such questions, we experimented
with a prepared dataset as described in subsection B. Using
this dataset, we developed and ran experiments testing GPT4o-



mini’s reasoning performance with a suite of prompting types
that are further explained in subsection C.

A. Research Questions

The following research questions were explored in our
experiments: (1) How to prompt using CoT to reason about
dynamic scenarios? (2) How to use model based task planning
to reason about scenarios? (3) How to judge outputs and the
validity of the ground truth itself using an LLM as a judge
approach? (4) How do we interpret grades generated by the
LLM as a judge?

B. Dataset Preparation

WOMD-R contains around 100,000 files, with each file
containing one scenario. In each scenario, context informa-
tion with several interactions and related vehicle-intention
questions and answers are found. The data is reformatted
during the preprocessing stage as described in Section III.
During this stage, scenarios were categorized into small (less
than 6000 bytes), medium (between 6000 and 9999 bytes
inclusive), and large (greater than 9999 bytes), with each
category corresponding to varying amounts of information in
a scenario. Here, we identify the files by their scenario’s index
in WOMD-R’s dataset. For our experiments, we selected 15
scenarios at random to examine the performance of our suite
of prompting types. Our experiments are broken down as such:
five scenarios per file size for a total of 15 unique scenarios,
with each scenario undergoing one trial of each type of CoT
prompting type to generate performance grades. We refer to
these scenarios as the base scenario set for the rest of this
paper.

C. Model based Task Planning Evaluation

In our experiments, we explore the PDDL generation pro-
cess presented in Section III and in Figure 2. There are two
LLM as a Judge evaluations carried out; one is for evaluating
the PDDL files generated for consistency and coverage and
the other for evaluating GPT 4o-mini’s reasoning ability for
an interaction question within a given scenario. We explore
existence proofs of this approach which we have presented in
Section III.

D. Prompt Evaluations

In our experiments, we explored all the prompt types defined
in section III for each scenario in the base scenario set. We
used a randomly selected scenario (index 78) to prepare our in-
context examples within zero, two, four, and six-shot prompt-
ing for a total of 60 experiments. We prepared prompts for
ground truth validation, CoT, two types of negative prompting
combined with CoT (negative long and negative short), and
two types of refined prompting with and without lecturing
(refined basic), where GPT4.1 carries out the refinement. For
ground truth validation, we considered our base scenario set
using the ground truth validation prompt so the judge LLM
could grade the answers for each interaction per scenario that
was factually consistent with respect to the corresponding

context information. The grading format has been presented
in Section III. The Q1 scores for reasoning for interactions
within the basic scenario set are found in Table I.

V. RESULTS

In this section we analyze and observe the outcome of our
suite of prompting styles. In subsection A, we observe the
outcomes of our base scenario set, which influence the design
of later prompting styles. In subsection B, we observe the
results of a new prompting approach to address the errors
found in subsection A. In subsection C, we observe the results
of two additional prompting approaches to enhance the scores
of factually consistent scenarios in subsection A.

A. Model based task planning (MBTP) Prompt Evaluation

We aim for an existence proof for this prompting method.
PDDL generation for an example scenario are presented in
Section III. As described in Section IV, we run the evaluation
for GPT 4o-mini with MBTP prompting. In addition, we
record the LLM as a judge based PDDL consistency and
coverage scores to obtain a measure of PDDL generation
quality.

B. Chain of Thought Prompt and Ground Truth Evaluations
for Scenario Reasoning

To enhance the effect of CoT prompting types per file
size category, we analyzed the growth and decline made in
the 25th percentile (Q1) of correctness scores received per
scenario. Since Q1 is the lower quartile, its change implies the
remaining distribution also changing in the same way. For the
base scenario set, we observed that there was a near consistent
improvement in Q1 scores for scenarios 475, 182, and 13,
while scenarios 254, 136, and 41 portrayed a near consistent
decline. Q1 scores are presented in Table I. Here, growth is
highlighted in green and decline in red.

Scenario
(file
size)

GTV CoT-0 CoT-2 CoT-4 CoT-6

239 (S) 7.5 5.50 6.0 4.5 6.0
562 (S) 8.0 8.0 8.0 8.0 7.0
999 (S) 8.0 7.25 7.75 3.5 7.75
2827 (S) 8.0 6.0 10.0 4.0 5.0
475 (S) 8.5 6.5 7.0 9.0 9.0
6 (M) 8.0 6.0 6.5 6.0 6.0
254 (M) 4.5 5.5 3.0 2.75 3.0
622 (M) 7.25 7.25 8.0 8.5 7.25
136 (M) 4.5 7.0 6.5 5.5 5.5
182 (M) 8.5 2.5 9.5 8.0 9.0
52 (L) 4.0 2.0 2.0 2.0 3.0
13 (L) 10.0 2.25 9.25 9.25 10.0
41 (L) 5.25 6.0 4.0 4.0 3.0
102 (L) 3.0 2.0 5.5 4.0 4.75
600 (L) 8.0 6.0 6.5 4.0 4.5

TABLE I
BASE SCENARIO SET Q1 SCORES FOR GROUND TRUTH VALIDATION

(GTV) AND N-SHOT PROMPTING TYPES RESPECTIVELY

To understand the scoring growth and decline of these
indices, we carried out an in-depth qualitative analysis of
the correctness explanations generated by the judge LLM.
Based on this analysis, we develop negative prompts. First,



Fig. 4. Analysis of the Initial-Growth-Stability-Stability (I-G-S-S) trend across zero and two-shot prompts for scenario 13. Please refer to Table I for Q1
scores from scenario 13 portraying the I-G-S-S trend.

we categorized irregular Q1 patterns from Table I by creating
trend categories consisting of four stages. These stages are
separated by a dash (-), with the first stage always being
zero-shot, also named "Initial (I)." The following three stages
represent two, four, and six-shot prompting, ordered as listed
across all trend categories. While zero-shot is always labeled
as "Initial," two, four, and six-shot alternate through a metric
of three outcomes: growth, decline, and stability. Growth (G) is
an increase larger than 1, stability (S) is an increase or decrease
between 0 and 1 inclusive, and decline (D) is a decrease larger
than 1 with respect to the prior stage of the trend.

With this new metric, we grouped all 15 scenarios into
eight trend categories. Letters in bold represent the analysis
performed between stages to better understand a shift towards
growing, declining, or stabilizing Q1 scores. Our analysis
emphasizes two or three stages at a time in order to mini-
mize repeating or insignificant outcomes. We list our trend
categories and their corresponding scenarios: I-G-S-S (13), I-
D-S-S (254, 41), I-S-G-S (475), I-S-D-S (600), I-S-S-S (562,
6, 136, 52), I-S-S-D (622), I-G-D-S (182, 2827, 102), and
I-S-D-G (999, 239).

Based on these trend categories, we analyzed 283 para-
graphs of correctness explanations generated by DeepSeek-
V3 (Stage 1 of Figure 4). In this analysis, we noted the
errors DeepSeek-V3 described in GPT4o-mini’s reasoning,
and identified recurrent trends in the errors made. We then
condensed the 283 paragraphs into word banks showing the
mistakes GPT4o-mini’s reasoning made (Stage 2 of Figure 4).
For our interpretation, we summarized the data from Stage 2
for all n-shot prompting types into singular statements (Stage
3 of Figure 4). We used the stage 3 statements in all trends to
summarize error patterns made by each n-shot prompting for
all scenarios. Table II shows a completed stage 4 analysis.

N-Shot
Prompt

Stage 4 Summary

Zero-Shot AI frequently overcomplicated analysis by assuming potential in-
teractions and verbose explanations, while often misinterpreting or
neglecting key motion dynamics and important details of the scenario.

Two-Shot AI frequently overcomplicated analysis by being overly detailed, ver-
bose, and making incorrect assumptions, which leads to neglecting key
details, misinterpreting interactions, and minor deviations in accuracy.

Four-Shot AI frequently misinterprets motion dynamics and interac-
tions—especially yielding behavior—by making unnecessary
assumptions, focusing on extraneous details, and failing to recognize
or accurately address critical scenario aspects such as agent movement,
future actions, and interactions with traffic elements and surrounding
agents.

Six-Shot AI frequently overlooks critical scenario details—particularly yield-
ing and decelerating behavior—misinterprets agent movement and
interactions, and often introduces unnecessary concepts or focuses
on irrelevant agents instead of accurately addressing essential motion
dynamics.

TABLE II
STAGE 4: STATEMENTS DESCRIBING ERROR ANALYSIS PER N-SHOT

PROMPTING (APPLICABLE TO ALL SCENARIOS IN THE BASE SCENARIO
SET).

We arrived at negative prompting by using word banks
from stage 2 of Figure 4 to refine n-shot prompting. To
identify a more effective approach for negative prompting,
we compare "Long-Form" as opposed to "Short-Form." In
long-form, keywords from the word banks were separated by
commas to form a singular large paragraph, while short-form
summarized the entire paragraph into 8-11 statements. These
statements acted as guidelines for each n-shot prompting type.
Both of the negative prompting types were specifically placed
after the in-context example so the mini LLM would consider
its prior reasoning errors after obtaining scenario information.
The results of this procedure are found in Table III.

Because long and short-form negative prompting returned
similar Q1 scores, we proceeded to use only short-form in



File
Size

Combined
Scenarios

Prompting
Style

Zero-
Shot

Two-
Shot

Four-
Shot

Six-
Shot

Small
239, 562, 999,
2827, 475

CoT
Only

6.00 7.00 5.25 6.25

NL-CoT 6.00 8.00 6.50 7.00
NS-CoT 6.00 8.00 6.00 7.25

Medium
6, 254, 622,
136, 182

CoT
Only

6.00 6.00 6.00 4.50

NL-CoT 6.00 4.00 4.00 5.00
NS-Cot 6.00 5.00 4.00 4.00

Large
52, 13, 41,
102, 600

CoT
Only

3.00 4.75 4.00 4.00

NL-CoT 3.00 5.75 4.00 4.00
NS-CoT 3.00 6.00 3.00 4.00

TABLE III
Q1 SCORES PER N-SHOT PROMPTING OF COMBINED SCENARIOS IN THE
BASE SCENARIO SET. NL-COT AND NS-COT ARE NEGATIVE LONG AND

SHORT-FORM PROMPTING COMBINED WITH COT.

other variations of our experiments. Although the negative
prompting improved Q1 scores in some instances, it also
declined in others when compared to our base scenario set
(CoT only). To mitigate these irregular outcomes, we incor-
porate short-form negative prompting into our refined (without
lecturing) prompting strategy, also known as refined basic
prompting.

Scenario
Index
(File
Size)

GTV CoT-
2 (B)

CoT-
2 (L)

CoT-
4 (B)

CoT-
4 (L)

CoT-
6 (B)

CoT-
6 (L)

239 (S) 7.5 6.5 6.5 6.0 5.0 6.5 6.5
562 (S) 8.0 8.0 6.0 8.0 8.0 8.0 7.0
999 (S) 8.0 8.5 8.5 7.0 7.5 6.5 8.5
2827 (S) 8.0 9.0 6.0 10.0 8.0 3.0 8.0
475 (S) 8.5 7.0 8.5 7.0 8.5 6.0 7.5
6 (M) 8.0 3.5 5.0 4.0 6.5 4.0 5.5
254 (M) 4.5 3.0 3.0 4.0 3.75 3.0 3.75
622 (M) 7.25 4.0 4.5 3.25 7.75 4.0 5.0
136 (M) 4.5 5.5 6.0 6.5 5.5 5.5 6.5
182 (M) 8.5 10.0 8.0 10.0 7.0 10.0 7.0
52 (L) 4.0 4.0 3.0 4.0 3.0 7.0 4.0
13 (L) 10.0 10.0 8.25 10.0 7.25 10.0 10.0
41 (L) 5.25 3.25 4.0 4.0 4.0 4.75 3.25
102 (L) 3.0 4.0 4.0 4.0 4.0 5.5 4.75
600 (L) 8.0 8.0 6.0 6.0 6.5 7.5 6.5

TABLE IV
GPT 4O-MINI Q1 SCORES PER SCENARIO FOR REFINED BASIC (B) AND
LECTURING (L) PROMPTING (WITH GPT 4.1) FOR 2, 4 AND 6 SHOT COT
PROMPTS WITH SHORT NEGATIVE PROMPTING. IN BOLD ARE THE SCORES

THAT HAVE IMPROVED BY 1 POINT OR MORE WITH RESPECT TO THE
CORRESPONDING N-SHOT PROMPTING IN TABLE I

C. Threats to Validity

In this subsection, we present doubts that might threaten
the validity of the results presented in this paper and the steps
to mitigate the same: (1) Challenges with LLM as a Judge
Methods: Several works highlight issues with LLM as a judge
methods such as biases [33]. We address these by ensuring
that the main evaluation, that of scenario reasoning capability
of GPT 4o-mini is a comparative evaluation given a ground
truth. In addition, we make use of the LLM as a Judge itself
to evaluate the ground truth answer. We have observed that
very low scores in this evaluation reflect factual inaccuracies
with respect to the scenario context information but higher
scores might also reveal LLM preferences. (2) Repeatability:

Since the key contribution of this paper is a suite of prompting
approaches, it is important to ensure that responses to a prompt
are repeatable. LLMs do not have completely deterministic
outputs. This is necessary for outputs that are needed to be well
formatted e.g. in PDDL generation. To mitigate this, we ensure
that the reasoning capability enhanced by prompts is evaluated
over a representative set of scenarios with varying information
and examples. In addition, this evaluation is carried out over
several tries.

VI. CONCLUSION

In this paper, we present a suite of prompting approaches
to enhance the reasoning capability of a language model for
complex dynamic vehicle interaction scenarios in the Waymo
Open Motion Dataset - Reasoning dataset. We explore both
symbolic method based prompts as well as Chain of Thought
Prompting. We evaluate the performance of these prompts
using a suite of LLM as a Judge approaches. In the future,
evaluation of a larger set of scenarios in this dataset as well
as datasets such as DriveLM [34] can be explored along with
a wider range of prompting approaches.
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