
ScenarioQA: Evaluating Test Scenario Reasoning
Capabilities of Large Language Models

Shreya Sinha
Electrical and Computer Engineering Department

University of California, Santa Cruz
Santa Cruz, CA

ssinha12@ucsc.edu

Ishaan Paranjape
Computational Media Department

University of California, Santa Cruz
Santa Cruz, CA

iparanja@ucsc.edu

Jim Whitehead
Computational Media Department

University of California, Santa Cruz
Santa Cruz, CA

ejw@ucsc.edu

Abstract—Autonomous Vehicles (AVs) have the potential of
reducing car accidents and increasing accessibility to transporta-
tion. AVs need to be rigorously tested. Scenario-based testing
offers a set of approaches to design high-risk tests for AVs at
low cost. Since the AVs need to be tested for a large number
of scenarios, automated generation approaches are needed. Pre-
trained Large Language Models (LLMs) are open-input, general-
purpose data generators with good learning and reasoning
abilities. However, due to the black-box nature of these systems,
it’s difficult to get direct evidence of their abilities. In this paper,
we address the open question of the reasoning capabilities of
pre-trained LLMs specifically in the context of scenario-based
testing of AVs. Inspired by QA benchmarks for LLM evaluations
for commonsense reasoning, science reasoning, and more, we
present our main contribution, ScenarioQA. This benchmark
involves an LLM-based QA generation process based on an
integration of methods to generate questions and corresponding
answers specifically in the context of scenario-based testing. We
carry out a comprehensive evaluation of this process and gain
valuable insights regarding effective QA generation. In addition,
we evaluate several available pre-trained LLMs for these abilities.

Index Terms—scenario-based testing, autonomous vehicles,
large language models, artificial intelligence

I. INTRODUCTION

Autonomous Vehicles (AVs) have the potential to eliminate
accidents created by human error and reduce traffic fatalities
by up to 90% [1]. In addition, AVs may even allow for
accessible transportation for people with disabilities [2] as well
as reducing environmental impact through innovative designs,
enhancement of traffic flow, and technical advancements [3].
Due to the large number of sensors and a complex technology
stack incorporated in AVs, it’s necessary to test their behavior
before releasing them for general public use to ensure that they
react safely under given circumstances. The most prevalent
approach used for testing is creating simulations of the driving
environment [4]. Many different paradigms for testing are
considered including real-world, shadow modem simulation,
hybrid, XIL, etc.

Simulation in particular allows testing under different con-
ditions and environments (both with static and dynamic ele-
ments) in the form of scenarios. Particularly, scenarios allow
for the creation of high-risk, low-cost environments [5] which

is difficult to design and carry out as a part of real-world
testing. Real-world field tests provide further insight under real
driving conditions and are complementary to simulation testing
[5]. Mostly, scenarios are hand-authored (such as in CARLA
Scenario Runner or Scenic), as such, automated generation of
scenarios is necessary since AVs need to be tested for a large
number of test scenarios. Large Language Models (LLMs) are
open-input, general purpose data generators that have been
gaining significance recently with the advent of tools such as
ChatGPT. A comprehensive understanding of the capabilities
of LLMs to help with automated scenario generation remains
an open question. In this paper, we present an initial evaluation
to gain this understanding across various pre-trained LLMs and
prompting methods.

LLMs are neural network models for textual data. They can
generate a wide range of data. [6]. A few advantages are the
capability of in-context learning and reasoning as a result of
which they are capable of arriving at solutions to problems
without pre-written instructions [7]. One disadvantage is that
they are black box models where the general reasoning process
to conclude something is inaccessible, therefore any decisions
or conclusions that the network reaches could be scrutinized
due to the unpredictability of the LLM’s behavior. Therefore,
we aim to focus our evaluation on reasoning evaluations within
the context of scenario-based testing of AVs.

One approach for creating more transparency in evaluating
the capabilities of LLMs is question-answering benchmarks.
Textual Question Answering (QA) [8][9][10] papers use un-
structured data to provide precise answers to users’ questions
in natural language processing [11]. QA benchmarks can
be used to provide evaluations for users to understand the
reasoning of LLMs. Our contribution is that we adapt and
extend several current QA approaches to create a new QA
benchmark for evaluating the reasoning capabilities of pre-
trained LLMs within the context of scenario-based testing
of AVs. In addition, to scale the number of questions available
and to coherently compose questions with multiple structures,
we make use of a pre-trained LLM. One implication of this
then can be the design of pre-trained LLM-based scenario
generation tools.

The rest of the paper is divided into sections as follows:

© © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.



In section 2, we go over related works, look at other QA
sources, and determine questions that will evaluate the specific
reasoning capabilities of GPT. In section 3, we present an
approach for formulating questions and an automated process
for scaling question generation using GPT-4. In section 4, we
present the design of our experiments. Section 5 contains a
summary of the results and a discussion of the same. Section 6
concludes this paper and presents some ideas regarding future
work. The code for this paper is located at the following URL:
https://github.com/AugmentedDesignLab/ScenarioQA

II. RELATED WORKS

A. Scenario Based Testing of AVs:

Before vehicles with high levels of automation such as Level
3 (conditionally automated) or Level 4 (high automation) [12]
can be put on the market for commercial use, they must be
thoroughly tested with an efficient assessment [13]. Many
such tests exist including real-world testing, function-based
testing, and even shadow mode, but one of the most promising
and effective methods is the scenario-based testing approach.
According to [13] a scenario can be classified as a temporal
sequence of actions or events that occur in a scene such as a
road or intersection with multiple participants and objects all
playing a role in the simulation. Scenarios can help to support
the development process by developing the necessary software
and hardware components as well as testing the safety features
of those components and ensuring their reliability [12].

Often creating and testing a scenario is a meticulous and
time-intensive process and there is a necessity to specify all
scenario details and define test scenarios manually [14]. As
such, it is imperative to have the potential to automatically
generate test scenarios that are based on real-world traffic rules
and scenarios [14].

B. Prompting and QA benchmarks:

LLMs can play a potential role in the simulation for AVs
due to the complex abilities of modern-day language models.
For instance, on average, ChatGPT was 63.41% accurate under
10 different reasoning categories [15] with zero-shot learning.
Chain of Thought (CoT) reasoning can help LLMs not only in
the few-shot learning setting but also in the fine-tuning setting
which improves model performance and reliability [16]. CoT
reasoning along with the answer was found to improve the rea-
soning ability of models. Especially for GPT-3, this increases
the result to 75.17% [16]. One interesting component that can
very effectively test the knowledge base of an LLM is domain-
based QA pairs. Effectively, the formulation of multiple-choice
questions involving question concepts, answer concepts, and
distractors is strategically designed to challenge models and
require deeper understanding rather than relying on surface-
level clues [8].

C. LLMs for Autonomous Driving:

Although AVs have thorough and well-tested modules that
can handle a variety of situations, they may easily fail when
they come across unpredictable cases or accidents. Given that

LLMs have access to a wealth of knowledge across a variety of
domains, autonomous driving systems could benefit from im-
proved text prediction [17]. Additionally, due to their various
reasoning capabilities, LLMs have the potential to generate
and analyze low-level vehicle controls [17]. Moreover, LLMs
have the potential to integrate human-like intelligence into
AV systems [18] which include skills and reasoning such
as spatial reasoning, pattern recognition, predictive reasoning,
and object recognition and classification. Although there have
been attempts to integrate human reasoning and knowledge
into these AV systems, they lack deeper reasoning ability
inherent to humans [18] which LLMs can help bridge.

III. METHOD

This section details the question-answer (QA) generation
process. Pre-trained LLM GPT-4, available via the OpenAI’s
API is prompted to generate QA pairs by providing it in-
formation regarding different, relevant forms of reasoning,
ontologies for scenario-based testing of AVs and formulating
MCQs in general. An overview followed by design details for
each subprompt mentioned above is written in the remainder
of this section. Running GPT-4 with this prompt results in
sets of 25 questions of a specific reasoning type. The sets have
varying levels of difficulty among the questions while covering
unique concepts within scenario-based testing of AVs.

A. Question-Answer Generation Overview

We create a framework for structuring questions to evaluate
a pre-trained LLM for various types of reasoning. A complete
overview of this process is shown in the figure below. Broadly,
the framework includes the following elements: (1) Reasoning-
specific question structure: We consider multiple reasoning
evaluations (as mentioned in [15]) in the QA format that is
relevant to scenario-based testing of autonomous vehicles. (2)
Concepts: We consider the ASAM OpenXOntology (described
in subsection D) and [19] for creating the final ontology. (3)
General question formulation structure: We broadly consider
elements of the structure for generating MCQs shown from
[20]. This gives us some foundational, structural elements
applicable to all MCQs.

B. Given Scenario

A detailed traffic scenario with the static elements involving
road with clear weather, lighting, and road conditions as well
as information about the vehicles and/or pedestrians. Using
this scenario, we were able to create questions for specific
reasoning types.

C. Reasoning Types

The following subsection presents this framework for each
reasoning type along with some questions that result from it.
These questions are then included in the representative dataset
(only a representative set of questions). In the next section, we
evaluate a set of pre-trained LLMs with specific prompting
styles (such as chain-of-thought) for our question dataset.

In this paper, the question generation framework integrates
a format for each reasoning category, multiple choice



Fig. 1: Overall diagram for approach from conception to
evaluation

questioning style as well as Bloom’s taxonomy [20]. In
addition, we provide an ontology that provides the necessary
background concepts to the pre-trained LLM regarding
scenario-based testing and examples of the reasoning type for
reference which then provides adequate structure and details
to the LLM to generate questions for each category. We
will now detail question formats for each reasoning category
below. This is followed by details regarding a general MCQ
format which includes Bloom’s taxonomy.

1) Commonsense Reasoning: Commonsense reasoning is
used for understanding familiar knowledge and basic concepts
to make predictions based on past behavior. CommonsenseQA
is a benchmark for pre-trained LLMs to evaluate commonsense
reasoning. It contains certain concepts and relations (sampled
from ConceptNet) such as compositional or cause-effect rela-
tions [8]. These relations also indicate that commonsense skills
are used in addressing the question. We maintain the relation
and skill categories in this paper but instead use concepts from
the scenario-based testing ontology detailed in this section
further.

2) Deductive Reasoning: involves determining certain con-
clusions based on more general statements or assumptions
[15]. For our purposes, EntailmentBank [15][9] has examples
of subcategories of inferences that are used in deductive
reasoning. We have referenced those subcategories in our
framework to show the type of relation between each entity
and to generate questions.

3) Inductive Reasoning: entails making predictions about
new situations using previously known facts or existing knowl-
edge. We have referenced the story generation method used
by CLUTRR [10] as well as the snapshots of puzzles used to
generate QA pairs based on inductive logic. These puzzles
reference relations between people that are fairly easy for

Fig. 2: An example ontology from the ASAM OpenXOntology
standard

a human to determine, however, they may be a bit more
challenging for an LLM to handle.

4) Spatial Reasoning: Spatial reasoning regards the ability
to understand physical space given spatial relations among a
few objects. A few language model evaluation benchmarks
that involve spatial reasoning are detailed in [21] and [22]. The
latter addresses the shortcomings of the former of being overly
simplistic in terms of relations, given scene information and
reasoning steps required. In this paper, given a scenario and the
appropriate ontology, we evaluate spatial reasoning skills using
spatial relations presented in SpartQA [22]. These are relative
directions (such as left, right, above, below), qualitative dis-
tances (such as near and far) as well as crash-related spatial
relations (such as near misses). In [22], reasoning takes place
using spatial rules which resemble formal method relational
properties such as transitivity and symmetry.

5) Temporal Reasoning: uses concepts such as frequency,
duration, as well as relative ordering. In [23], complex tem-
poral reasoning is evaluated by providing a multi-turn dia-
log followed by a multiple-choice sentence completion task
that requires significant commonsense temporal reasoning to
answer. In this paper, we consider the reasoning structure
suggested by the reasoning categorization mentioned in [23]:
general commonsense sense (such as the perception of walk-
ing distance), comparison (notions of earlier and later with
respect to a given time) and arithmetic regarding time periods.

Using these aforementioned reasoning structures, we are
able to evaluate the specific skills of pre-trained LLMs.

D. Scenario Ontology

We make use of the ASAM OpenXOntology [24]. Combin-
ing the conceptual structure of the ontology with structures
for question formation and reasoning evaluations mentioned
above, we can formulate effective questions. This ontology
consists of two key sub-ontologies: core, domain, and applica-
tion level. The core ontology refers to general concepts that are
not necessarily about scenarios e.g. types of relations, states,
and objects. Other ontologies are based on the core ontology.
For this paper, we are focused on the domain ontology.
This ontology provides us with standardized concepts and
relations regarding scenario elements in each layer of the six-
layer model [25]: roads, permanent road objects, temporary
construction artifacts, vehicles, pedestrians, and environmental
conditions. An example of a set of classes in this ontology
is shown in figure 2. In addition, to refine this ontology, we
consider the approach in [19].



E. General question formation structure

We consider the multiple choice question formation struc-
ture provided in [20]. Here, MCQs are generated using GPT
which follows the learning objectives of a programming
course. Here, an MCQ is simply defined as a question with two
types of answers; a stem and distractors. Similar to [20], we
utilize aspects of Bloom’s taxonomy to guide the generation
of high-quality questions.

Information from all the previous subsections results in a
comprehensive prompt to generate questions. Questions are to
be generated in sets of variable numbers of questions. In the
next section, we detail the experimental setup to evaluate this
generation process. In addition, we evaluate pre-trained LLM’s
reasoning capabilities by providing them with a scenario
and corresponding questions from the generated dataset and
grading them based on their explanations and accuracy.

IV. EXPERIMENTAL SETUP

In this section, we detail the test runs for evaluating
the question-answer generation process and the performance
of pre-trained LLMs in answering questions. The question-
answer generation process uses GPT-4, an LLM. Since LLMs
are probabilistic models with randomization, we need to
evaluate several permutations of prompts to ensure that the
generated question set is of high quality.

A. Question-Answer Generation

We carry out test runs to evaluate the performance of the
QA generation process detailed in section III. Each test run
consists of a configuration of the following parameters: (1)
Prompt Wording. This includes the wording of specific as-
pects of the prompt detailed in section III. (2) Ordering. This
pertains to the ordering of the different aspects of the prompt.
(3) Reasoning type. (4) Number of examples provided.
Following the Chain-of-thought prompting process in [26],
this parameter details the number of examples. (5) Elements
removed from the base prompt. Following the process of
ablation testing, we measure the impact of parts of the prompt
being removed. (6) Number of questions generated. (7) Rea-
soning hops needed. Following [27], we categorize reasoning-
based questions in terms of reasoning hops needed to solve
them. This provides us with a measure of the difficulty of a
question. (8) Number of iterations in a single chat context.
Since the LLM used is a chat completion model, the sequence
of inputs and outputs have a message-based chat format. This,
in addition to other advantages of these LLMs, means that we
can refine outputs by iteratively generating the same response
with some feedback [28]. We test whether this process im-
proves the questions or not. (8) Temperature. LLMs contain a
temperature parameter to introduce randomness and creativity
in outputs. We evaluate the impact of this parameter, especially
on the generation consistency. (9) Pre-trained LLM used
to generate questions. (10) Consistency in separate chat
contexts. Since the LLMs have randomness in their generation
process, getting consistent outputs is difficult. We evaluate this.
(11) Solution and explanation generation. We evaluate the

Fig. 3: QA Generation

generated questions with and without solution and explanation
generation (and the impact of their ordering).

We carry out an adequate number of permutations of this
configuration. We make use of the guidance python package
[29]. We observe and record the questions generated by the
LLM. An example of one such QA set generation is shown
in figure 3. We evaluate for consistency in the questions
(with possible answer choices) generated and the request made
in the prompt. In addition, we make a statement regarding
the plausibility of the solution and explanation generated.
We measure the final number of questions generated, the
redundancy among the questions, and the number of hops to
reach the solution.

B. Grading Pre-trained LLMs

We carry out test runs to evaluate the performance of pre-
trained LLMs given only a scenario and the corresponding set
of questions. Each test run is a configuration of the param-
eters for the QA generation experiment above but applied to
the questions. We manually grade the explanations for good
reasoning skills. In addition, we record the accuracy of the
options selected by pre-trained LLMs while attempting these
questions, with a focus on LLMs other than the one that
generated these questions. A summary of this evaluation is
written in the next section. To increase the efficiency of the
test runs, we make use of an LLM playground feature of the
LiteLLM package that allows us to evaluate the response of
multiple pre-trained LLMs simultaneously [30]. Examples of
these are shown in figure 4.

V. RESULTS AND DISCUSSION

In this section, we present summaries of evaluations for
test runs under both experiment A and experiment B. Further,
we analyze the results and detail the impact of each test run
parameter. From the results of these test runs, we aim to
address the following high-level research question:

• RQ 1: How do we generate effective questions using pre-
trained LLMs to evaluate reasoning capabilities in the
area of scenario-based testing of AVs?

• RQ 2: How do we effectively evaluate pre-trained LLMs
using given QA data?



Fig. 4: Pre-trained LLM evaluations: LiteLLM Playground

A. Question-Answer Generation Results

We used the pre-trained LLM GPT-4 for evaluating the
QA generation process. By carefully changing the experiment
parameters detailed in the previous section, we gained valuable
insights regarding effective prompting strategies for generating
high-quality QA sets, correctness and consistency in genera-
tion, and managing redundant questions and answer choices.
These insights are detailed below.

1) Effective prompting strategies: The elements within the
generated questions or QA pairs were nearly always consistent
with the instructions provided in the prompts. The scenarios
generated were plausible and made use of the generated
ontology. It must be noted though that multiple, simultaneous
instructions about maintaining counts were difficult for the
LLM to follow. For example, in one test run, we instructed the
LLM to generate 10 QA pairs with a certain number from each
Bloom’s taxonomy level and a certain number of questions
for 1, 2, and 3 reasoning hops. GPT-4 couldn’t maintain all
three simultaneous counts correctly in any of the test runs at
any of the tested temperature levels. At the same time, the
LLM was able to follow multiple, simultaneous instructions
regarding the structure of text generation. In our prompt, we
require GPT-4 to generate multiple choice questions with four
options, follow Bloom’s taxonomy, and follow the reasoning
examples which it carried out quite well.

In line with the findings of [26], examples of reasoning were
crucial for improving the generation process. We observed
that removing examples of reasoning and simply instructing
it to follow a reasoning pattern either reduced the questions
requiring reasoning or removed them completely. The more
the number and relevance of given examples, the better
the generation. This process has been defined as in-context
learning, which is a property that emerges as we scale from

small to large language models [31]. In our experiments, at
low-temperature values, we observed GPT-4 learning much
subtler patterns within examples such as the answer choice
which is supposed to be the correct answer and the writing
style of answer choices such as the incorrect answer choices
for commonsense reasoning were generally implausible. Since
the temperature parameter introduces a certain degree of
randomness in the next word selection, increasing this value
generally reduced overfitting to the given examples. Along a
similar line, we observed that adding incorrect examples e.g.
questions with random words or characters for answer choices
resulted in a significant reduction in QA writing quality and a
significant increase in redundant questions and answer choices.

The presence of Bloom’s taxonomy terms (adapted from
[20]) significantly increased the depth of the QA pairs. When
removed, the questions did follow the reasoning examples but
only superficially, typically concerning the attributes of the
scenario elements. Here, a significant insight would be that
Bloom’s taxonomy terms in addition to good examples with
implicit patterns are crucial for high-quality QA generation.
Regarding a few categories though, questions could often
belong to multiple categories since a plausible rationale could
be generated for each one.

Mentioning the number of reasoning hops required wasn’t
adequate in generating complex and challenging questions.
However, when examples were provided, the LLM was able
to generate complex questions. Increasing complexity of the
questions though would often result in multiple correct options
being plausible solutions or incorrect options being generated.
A significant insight here would be that more examples of
challenging questions with complex reasoning hops are needed
in addition to a review process.

2) Managing redundancy: One significant need in this
paper was to have reproducible results. This is challenging
since LLMs are probabilistic models with significant random-
ness (with the presence of the temperature parameter). We
observed redundancy in most cases in either the questions gen-
erated or the options provided for the questions. In some cases,
since questions were on similar topics, some would provide
facts that would answer a previous question. Increasing the
temperature parameter and specifying per question structure
would significantly reduce redundancy and make the QA set
more diverse. However, with increased temperature, the same
prompt in a new chat context would generate completely
different scenarios and questions thereby not allowing for
experiments to be reproduced at a concrete level. At an abstract
level, this is still possible. At a zero temperature value, the
generated scenarios and questions would have an increased
consistency across new chat contexts but the relation between
prompt and generated data still wouldn’t be deterministic.
Other features such as the OpenAI API’s reproducible outputs
provide the option to ensure increased determinism [32].
However, we weren’t able to make use of this seed parameter
within the guidance package that we were using.



Fig. 5: A question that stumped GPT-3.5-turbo

B. LLM Evaluation Results

We evaluated 4 pre-trained LLMs on the generated sce-
narios: OpenAI’s GPT-3.5 and GPT-4, Cohere’s Command-
R and Command-R nightly and Google’s Gemini Pro. We
made observations on the accuracy of the responses and
the explanations generated. We observed the response of all
LLMs to a scenario provided and the questions generated. The
LiteLLM based experimental setup is shown in figure 4. All
LLMs generally were able to reason well for the questions
provided and provided accurate answer choice selections as
well as explanations. The Cohere LLMs provided detailed
explanations before selecting options. In select cases, as shown
in figure 5, the LLM makes an error in answer choice selection.

Contrary to results in [15], in our evaluation, GPT-4 per-
forms well in spatial reasoning and multiple-hop reasoning
questions. There might be multiple explanations for this: (1)
A significant time has passed since the evaluations of [15] and
pre-trained LLMs have been updated since then. (2) The LLMs
may reason differently for different concepts. Uniquely in this
paper, reasoning evaluations are carried out in the context of
AV test scenarios. More investigation is needed to verify this
theory.

C. Threats to Validity

In this subsection, we detail any doubts that might threaten
the validity of the results stated above. We then detail steps
taken to mitigate these threats.

1) Circular Evaluation: One concern that may arise is that
pre-trained LLMs are being used for QA generation and for
evaluation as well. This may not produce valuable results since
the training process is the same for both question generation
and grading. We mitigate this threat in the following ways:
(1) We ensure that the scenarios generated is close to the
concepts in the prompt. We ensure that the concepts are
an extension of the ASAM OpenXOntology. In addition, we
check scenarios generated for plausibility. (2) We ensure that
structure regarding answer choice and reasoning is introduced
in the prompt so as to not rely on the LLM’s knowledge. (3)
We make use of GPT-4 for QA generation but also evaluate
other models such as Cohere’s Command-R and Google’s
Gemini-Pro. (4) We perform an evaluation on a new chat
context and only share the scenario and the questions, not
the information in the QA generation prompt.

VI. CONCLUSION AND FUTURE WORK

Pre-trained LLMs present a significant potential for the
domain of scenario-based testing of AVs. However, the rea-
soning capabilities of pre-trained LLMs within this context
remain unknown. QA benchmarks are often used to assess the
capabilities of pre-trained LLMs. In this paper, we propose an
approach to create this benchmark and carry out evaluations
with the help of LLMs themselves. Integrating approaches
from MCQ generation, reasoning QA benchmarks, and ontol-
ogy generation using LLMs, we can generate QA data for a
wide range of scenarios and reasoning types. With the help of a
comprehensive evaluation, we gain valuable insights regarding
the topic of QA generation.

For future work, we can compare human-written and LLM-
generated explanations for questions with BLEU and ROUGE
metrics to compare the differences. In addition, more work
can be carried out for generating complex reasoning questions,
analysis of metrics such as average length of questions and
answer choice distribution, and an evaluation of a larger
variety of LLMs.

REFERENCES

[1] J. Fleetwood, “Public health, ethics, and autonomous
vehicles,” American Journal of Public Health, vol. 107,
no. 4, pp. 532–537, Apr. 2017, Epub 2017 Feb 16. DOI:
10.2105/AJPH.2016.303628.

[2] X. Wu, J. Cao, and F. Douma, “The impacts of ve-
hicle automation on transport-disadvantaged people,”
Transportation Research Interdisciplinary Perspectives,
vol. 11, p. 100 447, 2021, ISSN: 2590-1982. DOI: https://
doi.org/10.1016/j.trip.2021.100447. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S2590198221001536.

[3] Ó. Silva, R. Cordera, E. González-González, and S.
Nogués, “Environmental impacts of autonomous ve-
hicles: A review of the scientific literature,” Science
of The Total Environment, vol. 830, p. 154 615, 2022,
ISSN: 0048-9697. DOI: https : / / doi . org / 10 . 1016 /
j . scitotenv . 2022 . 154615. [Online]. Available: https :
/ / www . sciencedirect . com / science / article / pii /
S0048969722017089.

[4] S. Feng, X. Yan, H. Sun, et al., “Intelligent driving in-
telligence test for autonomous vehicles with naturalistic
and adversarial environment,” Nature Communications,
vol. 12, p. 748, 2021. DOI: 10.1038/s41467-021-21007-
8. [Online]. Available: https://doi.org/10.1038/s41467-
021-21007-8.

[5] Center for Sustainable Systems, University of Michigan,
Autonomous vehicles factsheet, Pub. No. CSS16-18,
2023.

[6] [Online]. Available: https : / /www.nvidia . com/en - us /
glossary / large - language - models / # : ∼ : text = Large %
20Language % 20Models % 20Explained , content %
20using%20very%20large%20datasets..



[7] Z. Jiang, J. Araki, H. Ding, and G. Neubig, “How
can we know when language models know? on the
calibration of language models for question answering,”
eng, Transactions of the Association for Computational
Linguistics, vol. 9, pp. 962–977, 2021, ISSN: 2307-
387X.

[8] A. Talmor, J. Herzig, N. Lourie, and J. Berant, “Com-
monsenseQA: A question answering challenge target-
ing commonsense knowledge,” in Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), J. Burstein, C. Doran, and T. Solorio, Eds.,
Minneapolis, Minnesota: Association for Computational
Linguistics, Jun. 2019, pp. 4149–4158. DOI: 10.18653/
v1/N19-1421. [Online]. Available: https://aclanthology.
org/N19-1421.

[9] B. Dalvi, P. Jansen, O. Tafjord, et al., Explaining
answers with entailment trees, 2022. arXiv: 2104.08661
[cs.CL].

[10] K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. L.
Hamilton, Clutrr: A diagnostic benchmark for induc-
tive reasoning from text, 2019. arXiv: 1908 . 06177
[cs.LG].

[11] Y. Bai and D. Z. Wang, “More than reading compre-
hension: A survey on datasets and metrics of textual
question answering,” CoRR, vol. abs/2109.12264, 2021.
arXiv: 2109.12264. [Online]. Available: https://arxiv.
org/abs/2109.12264.

[12] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for
development, test and validation of automated vehicles,”
in 2018 IEEE Intelligent Vehicles Symposium (IV),
2018, pp. 1821–1827. DOI: 10.1109/IVS.2018.8500406.

[13] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and
F. Diermeyer, “Survey on scenario-based safety as-
sessment of automated vehicles,” IEEE Access, vol. 8,
pp. 87 456–87 477, 2020. DOI: 10.1109/ACCESS.2020.
2993730.

[14] Y. Deng, J. Yao, Z. Tu, X. Zheng, M. Zhang, and
T. Zhang, Target: Automated scenario generation from
traffic rules for testing autonomous vehicles, 2023.
arXiv: 2305.06018 [cs.SE].

[15] Y. Bang, S. Cahyawijaya, N. Lee, et al., A multitask,
multilingual, multimodal evaluation of chatgpt on rea-
soning, hallucination, and interactivity, 2023. arXiv:
2302.04023 [cs.CL].

[16] P. Lu, S. Mishra, T. Xia, et al., “Learn to explain:
Multimodal reasoning via thought chains for science
question answering,” in The 36th Conference on Neural
Information Processing Systems (NeurIPS), 2022.

[17] Z. Xu, Y. Zhang, E. Xie, et al., Drivegpt4: Interpretable
end-to-end autonomous driving via large language
model, 2024. arXiv: 2310.01412 [cs.CV].

[18] J. Mao, J. Ye, Y. Qian, M. Pavone, and Y. Wang, A
language agent for autonomous driving, 2023. arXiv:
2311.10813 [cs.CV].

[19] Y. Tang, A. A. B. da Costa, J. Zhang, I. Patrick, S.
Khastgir, and P. Jennings, Domain knowledge distilla-
tion from large language model: An empirical study
in the autonomous driving domain, 2023. arXiv: 2307.
11769 [cs.CL].

[20] J. Doughty, Z. Wan, A. Bompelli, et al., “A compar-
ative study of ai-generated (gpt-4) and human-crafted
mcqs in programming education,” in Proceedings of the
26th Australasian Computing Education Conference,
ser. ACE 2024, ACM, Jan. 2024. DOI: 10 . 1145 /
3636243.3636256. [Online]. Available: http: / /dx.doi .
org/10.1145/3636243.3636256.

[21] J. Weston, A. Bordes, S. Chopra, et al., “Towards ai-
complete question answering: A set of prerequisite toy
tasks,” arXiv preprint arXiv:1502.05698, 2015.

[22] R. Mirzaee, H. R. Faghihi, Q. Ning, and P. Kordj-
mashidi, Spartqa: : A textual question answering bench-
mark for spatial reasoning, 2021. arXiv: 2104.05832
[cs.CL].

[23] L. Qin, A. Gupta, S. Upadhyay, L. He, Y. Choi, and M.
Faruqui, Timedial: Temporal commonsense reasoning in
dialog, 2021. arXiv: 2106.04571 [cs.CL].

[24] ASAM, Asam openxontology, https : / / www . asam .
net / project - detail / asam - openxontology/, Web page,
accessed 22 April 2024, 2024.

[25] M. Scholtes, L. Westhofen, L. R. Turner, et al., “6-layer
model for a structured description and categorization of
urban traffic and environment,” IEEE Access, vol. 9,
pp. 59 131–59 147, 2021.

[26] J. Wei, X. Wang, D. Schuurmans, et al., Chain-of-
thought prompting elicits reasoning in large language
models, 2023. arXiv: 2201.11903 [cs.CL].

[27] T. Qian, J. Chen, L. Zhuo, Y. Jiao, and Y.-G. Jiang,
“Nuscenes-qa: A multi-modal visual question answer-
ing benchmark for autonomous driving scenario,” in
Proceedings of the AAAI Conference on Artificial In-
telligence, vol. 38, 2024, pp. 4542–4550.

[28] A. Madaan, N. Tandon, P. Gupta, et al., “Self-refine:
Iterative refinement with self-feedback,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[29] S. Lundberg et al., Guidance, https : / / github . com /
guidance - ai / guidance, Web page, accessed May 01,
2024, 2024.

[30] I. Jaff et al., Litellm, https://github.com/BerriAI/litellm,
Web page, accessed May 01, 2024, 2024.

[31] J. Wei, Y. Tay, R. Bommasani, et al., “Emergent
abilities of large language models,” arXiv preprint
arXiv:2206.07682, 2022.

[32] S. Anadkat, How to make your completions outputs con-
sistent with the new seed parameter, https://cookbook.
openai .com/examples/reproducible outputs with the
seed parameter, Nov. 2023.


